Skip to main content

Este famoso remanente de supernova esconde un secreto

Cuando las estrellas masivas llegan al final de sus vidas y explotan en una supernova, pueden dejar enormes estructuras en el espacio llamadas remanentes de supernova. Estos son a menudo los objetivos favoritos de los astrónomos debido a sus formas hermosas y distintivas. Entre ellos se encuentra el famoso remanente SN 1987A que fue fotografiado por el telescopio espacial James Webb el año pasado. Ahora, los astrónomos que usan Webb han mirado más de cerca este remanente y han encontrado algo especial en su interior.

La supernova SN 1987A fue observada por primera vez en 1987 (de ahí su nombre) y era lo suficientemente brillante como para ser vista a simple vista, lo que la hace extremadamente reciente para los estándares astronómicos. Las estrellas viven millones o incluso miles de millones de años, por lo que observar una que llega al final de su vida en tiempo real es un verdadero placer científico. Cuando esta estrella murió, creó una especie de supernova llamada colapso del núcleo, o Tipo II, en la que el corazón de la estrella se queda sin combustible, lo que hace que colapse repentina y violentamente. Este colapso es tan severo que el material rebota y es expulsado en una explosión que viaja hasta un cuarto de la velocidad de la luz.

El telescopio espacial James Webb ha observado la mejor evidencia hasta ahora de la emisión de una estrella de neutrones en el sitio de una supernova conocida y recientemente observada conocida como SN 1987A. A la izquierda hay una imagen de NIRCam (cámara de infrarrojo cercano) publicada en 2023. La imagen de la parte superior derecha muestra la luz del argón ionizado individualmente (Argón II) capturada por el modo Espectrógrafo de Resolución Media (MRS) de MIRI (Instrumento de Infrarrojo Medio). La imagen en la parte inferior derecha muestra la luz del argón ionizado multiplicado capturado por el NIRSpec (Espectrógrafo de Infrarrojo Cercano). Ambos instrumentos muestran una fuerte señal desde el centro del remanente de supernova. Esto indicó al equipo científico que hay una fuente de radiación de alta energía allí, muy probablemente una estrella de neutrones.
El telescopio espacial James Webb ha observado la mejor evidencia hasta ahora de la emisión de una estrella de neutrones en el sitio de una supernova conocida y recientemente observada conocida como SN 1987A. A la izquierda hay una imagen de NIRCam (cámara de infrarrojo cercano) publicada en 2023. La imagen de arriba a la derecha muestra la luz del argón ionizado individualmente (Argón II) capturada por el modo Espectrógrafo de Resolución Media (MRS) del MIRI (Instrumento de Infrarrojo Medio). La imagen en la parte inferior derecha muestra la luz del argón ionizado multiplicado capturado por el NIRSpec (Espectrógrafo de Infrarrojo Cercano). NASA, ESA, CSA, STScI, Claes Fransson (Universidad de Estocolmo), Mikako Matsuura (Universidad de Cardiff), M. Barlow (UCL), Patrick Kavanagh (Universidad de Maynooth), Josefin Larsson (KTH)

Se teoriza que este proceso deja un núcleo pequeño y extremadamente denso que podría ser una estrella de neutrones o un agujero negro. Esta teoría es ampliamente aceptada, pero los científicos nunca han observado que esto suceda realmente después de una supernova, antes de ahora. Cuando los investigadores encendieron los instrumentos de Webb en SN 1987a, vieron evidencia de una estrella de neutrones ubicada en el corazón del remanente.

«A partir de los modelos teóricos de SN 1987A, el estallido de neutrinos de 10 segundos observado justo antes de la supernova implicaba que se formó una estrella de neutrones o un agujero negro en la explosión. Pero no hemos observado ninguna firma convincente de un objeto recién nacido de ninguna explosión de supernova», explicó el investigador principal, Claes Fransson, de la Universidad de Estocolmo, en un comunicado. «Con este observatorio, ahora hemos encontrado evidencia directa de la emisión provocada por el objeto compacto recién nacido, muy probablemente una estrella de neutrones».

Se han necesitado más de 30 años de observación del remanente para poder detectar estos indicios de una estrella de neutrones, ya que las observaciones requerían instrumentos extremadamente sensibles. El remanente fue uno de los primeros objetos observados por Webb cuando comenzó las operaciones científicas en julio de 2022 que incluyeron el uso de su Instrumento de Infrarrojo Medio (MIRI). MIRI tiene un modo particular llamado Espectrógrafo de Resolución Media (MRS), que le permite ver el argón ionizado y otros elementos ionizados que son creados por fotos de muy alta energía.

«Para crear estos iones que observamos en la eyección, estaba claro que tenía que haber una fuente de radiación de alta energía en el centro del remanente SN 1987A», explicó Fransson. «En el artículo, discutimos diferentes posibilidades, encontrando que solo unos pocos escenarios son probables, y todos ellos involucran una estrella de neutrones recién nacida».

Al combinar la evidencia de MIRI con indicaciones similares del instrumento Espectrógrafo de Infrarrojo Cercano (NIRSpec), los investigadores tienen la primera evidencia directa de una estrella de neutrones que se forma a partir de una supernova de colapso del núcleo, lo que nos acerca un paso más a la comprensión de los dramáticos ciclos de vida de las estrellas.

La investigación se publica en la revista Science.

Diego Bastarrica
Diego Bastarrica es periodista y docente de la Universidad Diego Portales de Chile. Especialista en redes sociales…
Capturan los restos de una supernova vista por primera vez hace 2.000 años
capturan supernova vista por primera vez hace 2000 anos sn 185

Algunos de los eventos más dramáticos en el universo son las supernovas, que ocurren cuando las estrellas masivas se quedan sin combustible y llegan al final de sus vidas, o cuando una estrella en un binario se alimenta de su compañera hasta que alcanza un umbral crítico.

La estrella explota hacia afuera en un enorme derramamiento de luz y energía, que es lo suficientemente brillante como para ser visto desde otras galaxias, pero se desvanece rápidamente. Sin embargo, después de que el destello se ha desvanecido, algo queda atrás: un núcleo denso que puede convertirse en un agujero negro o una estrella de neutrones, y a veces una estructura elaborada y hermosa llamada remanente de supernova.

Leer más
NASA captura inusual y cercana vista de un agujero negro devorando una estrella
nasa captura inusual cercana agujero negro devorando estrella pia25440 1041

Black Hole Tidal Disruption Event (Animation)

Una extraordinaria e inusual captura ha realizado la NASA de un agujero negro devorándose una estrella, en el registro más cercano que se haya certificado.

Leer más
La colisión de estrellas de neutrones crea un destello colosal que cambia el paradigma
colision estrellas neutrones destello colosal rayos gamma kilonova choque estrella de

Algunos de los eventos más dramáticos en el universo son los estallidos de rayos gamma (GRB), breves pulsos de luz tan brillantes que se pueden ver desde miles de millones de años luz de distancia. Los investigadores dividen estos eventos en GRB cortos que duran unos segundos y GRB largos que duran hasta un minuto. Durante mucho tiempo, los investigadores pensaron que todos los estallidos largos de rayos gamma eran causados por el colapso de estrellas masivas. Pero ahora, una nueva investigación sugiere que algunos GRB largos podrían ser causados por la fusión de dos estrellas de neutrones.

Una estrella de neutrones es el núcleo denso que queda después de que una enorme estrella colapsa, y es uno de los objetos más densos del universo, solo superado por los agujeros negros. Las estrellas de neutrones tienen un tamaño muy pequeño, alrededor de 6 millas de diámetro, pero tienen más masa que todo el sol. Entonces, cuando dos estrellas de neutrones chocan y se fusionan en cada una, el resultado es explosivo. La fusión de dos estrellas de neutrones se llama kilonova, un evento raro que produce un gran destello de luz y se sabe que produce GRB cortos.
Esta impresión artística muestra una kilonova producida por dos estrellas de neutrones en colisión. Mientras estudiaban las secuelas de un largo estallido de rayos gamma (GRB), dos equipos independientes de astrónomos que utilizan una gran cantidad de telescopios en el espacio y en la Tierra, incluido el telescopio Gemini Norte en Hawai y el telescopio Gemini Sur en Chile, han descubierto las características inesperadas de una kilonova, la explosión colosal provocada por la colisión de estrellas de neutrones. NOIRLab/NSF/AURA/J. da Silva/Spaceengine
Pero cuando dos equipos de científicos investigaron un GRB recientemente identificado que duró 50 segundos, poniéndolo bien en la clasificación GRB larga, descubrieron que no fue causado por un colapso masivo de estrellas, sino más bien por una fusión de estrellas de neutrones.

Leer más