Hallazgo de metano arrojaría indicios de vida extraterrestre

Científicos de la Universidad de California en Santa Cruz (UCSC) afirmaron que la actividad biológica es la principal fuente de metano en la atmósfera. De esa manera, la presencia en un planeta rocoso de este gas incoloro e inodoro sería el primer indicio de vida extraterrestre.

El metano, planteó el equipo de expertos, es uno de los pocos signos potenciales de vida o “bioseñales” fácilmente detectables con el telescopio espacial James Webb. De ahí la validez de sus estimaciones, más si se considera que las observaciones arrancan a finales de 2022.

Recommended Videos

“Queríamos proporcionar un marco para interpretar las observaciones, de modo que si vemos un planeta rocoso con metano, sepamos qué otras son necesarias para que sea una bioseñal convincente”, explicó la estudiante de posgrado en astronomía y astrofísica Maggie Thompson, quien es la autora principal del estudio publicado en Proceedings of the National Academy of Sciences.

La UCSC enfatizó que esta es la primera “evaluación actualizada y específica de las condiciones planetarias necesarias para que el metano sea una buena bioseñal”, pues el gas también se origina de procesos no biológicos.

El organismo añadió que el estudio examina una serie de fuentes no biológicas de metano y evalúa su potencial para mantener una atmósfera rica en el elemento. Entre ellas, se encuentran los volcanes, las reacciones en entornos como las dorsales oceánicas, los respiraderos hidrotermales y las zonas de subducción tectónica, además de los impactos de cometas o asteroides.

“Los argumentos a favor del metano como bioseñal se basan en su inestabilidad de la atmósfera. Debido a que las reacciones fotoquímicas destruyen el metano atmosférico, este debe reponerse constantemente para mantener niveles elevados”, explicaron desde la UCSC.

Joshua Krissansen-Totton, becario de Sagan y coautor de la investigación, profundizó al respecto: “Si se detecta una gran cantidad de metano en un planeta rocoso, normalmente se necesita una fuente de magnitud para explicarlo. Sabemos que la actividad biológica crea grandes cantidades de metano en la Tierra, y probablemente también lo hizo en la Tierra primitiva, porque producir metano es algo bastante fácil de hacer metabólicamente”.

Sin embargo, complementó en una nota de prensa la UCSC, las fuentes no biológicas no podrían producir tanto metano sin generar también pistas observables sobre sus orígenes. Por ejemplo, las emanaciones de los volcanes añadirían tanto metano como monóxido de carbono a la atmósfera, mientras que la actividad biológica tiende a consumir con facilidad este último.

“Los investigadores descubrieron que los procesos no biológicos no pueden producir con facilidad atmósferas de planetas habitables ricas en metano y dióxido de carbono y con poco o ningún monóxido de carbono”, fundamentó la casa de estudios.

Recomendaciones del editor

Ex escritor de Digital Trends en Español
Juan José se ha desempeñado por cerca de dos décadas como periodista en medios de comunicación e instituciones públicas…
Mira la enana marrón más pequeña conocida en un impresionante cúmulo estelar

Una nueva imagen del telescopio espacial James Webb muestra una impresionante vista de un cúmulo estelar que contiene algunas de las enanas marrones más pequeñas jamás identificadas. Una enana marrón, también conocida a veces como estrella fallida, es un objeto a medio camino entre una estrella y un planeta, demasiado grande para ser un planeta, pero no lo suficientemente grande como para sostener la fusión nuclear que define a una estrella.

Puede sonar sorprendente, pero la definición de cuándo algo deja de ser un planeta y comienza a ser una estrella es, de hecho, un poco confusa. Las enanas marrones difieren de los planetas en que se forman como las estrellas, colapsando debido a la gravedad, pero no mantienen la fusión, y su tamaño puede ser comparable al de los planetas grandes. Los investigadores estudian las enanas marrones para aprender qué marca la diferencia entre estas dos clases de objetos.

Leer más
James Webb ofrece una segunda vista de una estrella que explotó

Cuando las estrellas masivas se quedan sin combustible y llegan al final de sus vidas, su fase final puede ser una explosión masiva llamada supernova. Aunque el brillante destello de luz de estos eventos se desvanece rápidamente, otros efectos son más duraderos. A medida que las ondas de choque de estas explosiones viajan al espacio e interactúan con el polvo y el gas cercanos, pueden esculpir hermosos objetos llamados remanentes de supernova.

Uno de estos remanentes de supernova, Cassiopeia A, o Cas A, fue fotografiado recientemente utilizando el instrumento NIRCam del Telescopio Espacial James Webb. Situada a 11.000 años luz de distancia en la constelación de Casiopea, se cree que es una estrella que explotó hace 340 años (vista desde la Tierra) y ahora es uno de los objetos de radio más brillantes del cielo. Esta imagen muestra la capa de material expulsada por la explosión interactuando con el gas que la estrella masiva emitió en sus últimas fases de vida.
Una nueva imagen de alta definición de la NIRCam (Cámara de Infrarrojo Cercano) del Telescopio Espacial James Webb revela detalles intrincados del remanente de supernova Cassiopeia A (Cas A), y muestra la capa de material en expansión que se estrella contra el gas arrojado por la estrella antes de que explotara. NASA, ESA, CSA, STScI, Danny Milisavljevic (Universidad de Purdue), Ilse De Looze (UGent), Tea Temim (Universidad de Princeton)
"Con la resolución de NIRCam, ahora podemos ver cómo la estrella moribunda se hizo añicos cuando explotó, dejando filamentos similares a pequeños fragmentos de vidrio", dijo el investigador principal Danny Milisavljevic de la Universidad de Purdue en un comunicado. "Es realmente increíble después de todos estos años estudiando Cas A resolver ahora esos detalles, que nos están proporcionando una visión transformadora de cómo explotó esta estrella".

Leer más
Misión Cryobot de NASA: el robot perforador que buscará vida extraterrestre

La próxima barrera de la NASA para encontrar vida extraterrestre podría estar debajo de las lunas de Júpiter y Saturno, ya que en un esfuerzo por perforar los océanos congelados de Europa y Encelado, habría respuestas sobre formas biológicas no conocidas hasta el momento.

Para eso, está la misión Cryobot, un robot perforador gigante que tendría la misión de llegar a las profundidades de ambos satélites.

Leer más