Skip to main content

La luz de las estrellas, clave en el origen de la Tierra

En 2011, científicos descubrieron que las muestras de viento solar traídas a la Tierra por la misión Génesis mostraron que los isótopos de oxígeno en el Sol difieren de los que se hallan en nuestro planeta, la Luna y los demás cuerpos celestes y satélites del sistema solar.

Según los expertos, al comienzo de la historia del sistema solar, el material que más tarde se convertiría en planetas recibió una fuerte dosis de luz ultravioleta (esto podría explicar la diferencia).

En aquel momento, al preguntarse de dónde procedía dicha fuente de energía, surgieron dos hipótesis. Una de ellas señalaba que la luz ultravioleta emanaba de nuestro entonces joven sol o de una gran estrella cercana en la llamada guardería estelar solar.

Cometas

Ahora, investigadores de la Universidad de Washington en St. Louis determinaron que lo más probable fue la segunda hipótesis.

“Sabíamos que nacimos del polvo de estrellas: es decir, el polvo creado por otras estrellas en nuestro vecindario galáctico era parte de los bloques de construcción del sistema solar”, explica en un comunicado Ryan Ogliore.

“Pero este estudio muestra que la luz de las estrellas también tuvo un efecto profundo en nuestros orígenes”, agrega.

Según los científicos, esta información estaba contenida en apenas 85 gramos de roca, una pieza de un asteroide encontrado como meteorito en Argelia, en 1990, llamado Acfer 094.

Los asteroides y planetas se formaron a partir del mismo material presolar, pero han sido condicionados por distintos procesos naturales.

Los bloques rocosos que se fusionaron para formar asteroides y planetas se rompieron y destrozaron, pero el asteroide del que proviene Acfer 094 logró sobrevivir durante 4,600 millones de años.

“Este es uno de los meteoritos más primitivos de nuestra colección”, dijo el coautor Lionel Vacher.

“No se calentó significativamente. Contiene regiones porosas y pequeños granos que se formaron alrededor de otras estrellas. Es un testigo confiable de la formación del sistema solar”, remata Vacher.

Recomendaciones del editor

Felipe Sasso
Ex escritor de Digital Trends en Español
Felipe Sasso es periodista y escritor. Desde temprana edad manifestó una importante inquietud hacia la escritura y las…
Mirando en nubes de polvo para entender la formación de estrellas
nubes de polvo formacion estrellas nebulosa captada observatorio paranal

Una nueva imagen del Observatorio Europeo Austral muestra un impresionante paisaje estelar alrededor de la nebulosa Sh2-54, ubicada a 6.000 años luz de distancia en la constelación de Serpens. Ubicada cerca en el cielo de la famosa Nebulosa del Águila, esta es también una región ocupada de formación estelar donde las nubes de polvo y gas se unen en nudos y forman los corazones de nuevas estrellas.

Nebulosas como estas se conocen como viveros estelares debido a todas las nuevas estrellas que se forman dentro de ellas, y los astrónomos las estudian para aprender más sobre los ciclos de vida estelares y las condiciones que se requieren para que las estrellas se formen y crezcan.
Esta imagen de la espectacular nebulosa Sh2-54 fue tomada en luz infrarroja utilizando el telescopio VISTA de ESO en el Observatorio Paranal en Chile. Las nubes de polvo y gas que normalmente son obvias en la luz visible son menos evidentes aquí, y en esta luz podemos ver la luz de las estrellas detrás de las nebulosas que ahora perforan. ESO/VVVX
La imagen fue tomada en el rango infrarrojo, lo que significa que menos de las nubes de polvo que forman la nebulosa son visibles. En cambio, los astrónomos pueden mirar a través de las nubes de polvo para ver las estrellas que se forman dentro. Fue tomada usando el telescopio Visible and Infrared Survey Telescope for Astronomy (VISTA), un telescopio terrestre ubicado en el desierto de Atacama, una ubicación muy elevada y muy seca en Chile.

Leer más
Hubble ve la luz fantasmal de estrellas perdidas y errantes
hubble luz fantasmal estrellas perdidas errantes

Cuando la mayoría de la gente aprende sobre la estructura del universo en la escuela, el modelo es simple: los planetas giran alrededor de las estrellas, y las estrellas se agrupan en galaxias, de las cuales hay muchas en el universo. Es posible que incluso hayas aprendido que las galaxias a menudo pueden agruparse por miles en enormes cúmulos de galaxias.

Sin embargo, hay planetas errantes y estrellas errantes por ahí, que vagan por el universo sin estar unidas a estructuras más grandes. Recientemente, el Telescopio Espacial Hubble se ha utilizado para investigar estrellas errantes que no están vinculadas a ninguna galaxia en particular, y descubrió que estos vagabundos emiten una neblina fantasmal de luz que se puede ver en los cúmulos de galaxias.
Estas son imágenes del Telescopio Espacial Hubble de dos cúmulos masivos de galaxias llamados MOO J1014 + 0038 (panel izquierdo) y SPT-CL J2106-5844 (panel derecho). El color azul agregado artificialmente se traduce de los datos del Hubble que capturaron un fenómeno llamado luz intracúmulo. Este resplandor extremadamente débil traza una distribución suave de la luz de las estrellas errantes dispersas por todo el cúmulo. Hace miles de millones de años, las estrellas se desprendieron de sus galaxias progenitoras y ahora se desplazan a través del espacio intergaláctico. CIENCIA: NASA, ESA, STScI, James Jee (Universidad de Yonsei) PROCESAMIENTO DE IMÁGENES: Joseph DePasquale (STScI)
La pregunta difícil que los astrónomos han estado reflexionando es cómo las estrellas rebeldes se dispersan por todo un cúmulo de galaxias, ya que no estaban seguros de si los cúmulos atrajeron a las estrellas rebeldes mucho después de que se formaron, o si las estrellas ya estaban presentes cuando el cúmulo se formó a su alrededor. Para responder a esto, un grupo usó el Hubble para observar la luz intracúmulo, que es la luz difusa y muy tenue que se ve alrededor y dentro de los cúmulos de galaxias que no está relacionada con galaxias específicas dentro del cúmulo.

Leer más
La colisión de estrellas de neutrones crea un destello colosal que cambia el paradigma
colision estrellas neutrones destello colosal rayos gamma kilonova choque estrella de

Algunos de los eventos más dramáticos en el universo son los estallidos de rayos gamma (GRB), breves pulsos de luz tan brillantes que se pueden ver desde miles de millones de años luz de distancia. Los investigadores dividen estos eventos en GRB cortos que duran unos segundos y GRB largos que duran hasta un minuto. Durante mucho tiempo, los investigadores pensaron que todos los estallidos largos de rayos gamma eran causados por el colapso de estrellas masivas. Pero ahora, una nueva investigación sugiere que algunos GRB largos podrían ser causados por la fusión de dos estrellas de neutrones.

Una estrella de neutrones es el núcleo denso que queda después de que una enorme estrella colapsa, y es uno de los objetos más densos del universo, solo superado por los agujeros negros. Las estrellas de neutrones tienen un tamaño muy pequeño, alrededor de 6 millas de diámetro, pero tienen más masa que todo el sol. Entonces, cuando dos estrellas de neutrones chocan y se fusionan en cada una, el resultado es explosivo. La fusión de dos estrellas de neutrones se llama kilonova, un evento raro que produce un gran destello de luz y se sabe que produce GRB cortos.
Esta impresión artística muestra una kilonova producida por dos estrellas de neutrones en colisión. Mientras estudiaban las secuelas de un largo estallido de rayos gamma (GRB), dos equipos independientes de astrónomos que utilizan una gran cantidad de telescopios en el espacio y en la Tierra, incluido el telescopio Gemini Norte en Hawai y el telescopio Gemini Sur en Chile, han descubierto las características inesperadas de una kilonova, la explosión colosal provocada por la colisión de estrellas de neutrones. NOIRLab/NSF/AURA/J. da Silva/Spaceengine
Pero cuando dos equipos de científicos investigaron un GRB recientemente identificado que duró 50 segundos, poniéndolo bien en la clasificación GRB larga, descubrieron que no fue causado por un colapso masivo de estrellas, sino más bien por una fusión de estrellas de neutrones.

Leer más