Skip to main content

Astrónomos consiguen medir masas de más de 800 agujeros negros supermasivos

El mayor censo de agujeros negros supermasivos en el universo cercano o local -aquellos colosos que crecen devorando todo en los núcleos activos de galaxias y que llegan a tener hasta miles de millones de veces la masa de nuestro Sol- ha sido dado a conocer por el equipo científico internacional del proyecto BASS Survey, tras más de 15 de años de investigación incluyendo una destacada participación de astrónomas y astrónomos del Centro de Astrofísica y Tecnologías Afines (CATA), desde Chile.

Astrónomos consiguen medir masas de más de 800 agujeros negros supermasivos

La investigación, que fue dada a conocer en la última edición de la revista Astrophysical Journal, incluye una serie de publicaciones científicas que utilizaron datos de grandes telescopios en el norte de nuestro país, Estados Unidos y el Observatorio Espacial Swift, de la NASA, logrando una extensa acumulación de información que ha permitido construir un mapa de estos agujeros negros activos y sus intensas emisiones en el universo cercano.

Imagen utilizada con permiso del titular de los derechos de autor

Cientos de horas de observación y análisis fueron requeridas para llevar adelante esta tarea, revelando las masas de agujeros negros supermasivos en centros galácticos con un nivel de detalle que había sido imposible conseguir hasta ahora. “El mapa es representativo de los agujeros negros activos en el universo local. Cuenta con más de 800 agujeros negros supermasivos en un rango de distancia de más de 5 mil millones de años luz. La novedad principal es que se pudo estimar las propiedades físicas más importantes para una gran muestra de agujeros negros supermasivos, como sus masas y tasas de acreción o crecimiento”, explica Claudio Ricci astrónomo de la Universidad Diego Portales, investigador del CATA y uno de los científicos principales del proyecto BASS Survey.

Recommended Videos

Según la investigación, cuando una cantidad sustancial de polvo y gas rodea un agujero negro supermasivo, puede formar un disco de acreción que emite grandes cantidades de luz en todo el espectro electromagnético, alcanzando su punto máximo en el rango óptico y ultravioleta, a
medida que cae en el agujero negro.

Franz Bauer, investigador CATA y académico del Instituto de Astrofísica de la Universidad Católica, quien también participó en la investigación, explica que este mismo polvo y gas, sin embargo, también puede bloquear nuestra vista hacia el llamado motor central, o núcleos
«activos» de las galaxias (AGN por sus siglas en inglés), dificultando la observación de estos gigantes con instrumentos y técnicas tradicionales.

“Lo anterior implica que aunque muchos agujeros negros supermasivos están acumulando material y creciendo activamente, no los vemos fácilmente en longitudes de onda visuales y no los tenemos en cuenta», dice. Esta barrera se pudo superar gracias al instrumento a bordo del Observatorio Swift conocido como BAT (Burst Alert Telescope), capaz de detectar rayos x de alta energía también conocidos como “rayos X duros”, asociados con altas emisiones energéticas procedentes de agujeros negros supermasivos.

Universidad de Goethe

“Es similar al proceso de tomar una radiografía, ya que este instrumento observaba en una frecuencia similar. En este caso, sería como una radiografía cósmica para observar los núcleos de galaxias donde están esos agujeros negros en crecimiento”, explica Ezequiel Treister, Subdirector de CATA y astrónomo de la Universidad Católica de Chile, quien también formó parte de la investigación.

Claudio Ricci, señala que a aquellos niveles de energía, la radiación interactúa muy poco con el material en su camino, permitiendo “detectar también algunos de los agujeros negros más obscurecidos. Esto ha hecho posible que contemos con una muestra casi completa de agujeros negros en fase de acreción (crecimiento) en los centros de las galaxias cercanas”, detalla el investigador. La velocidad a la que crecen estos agujeros negros varía mucho -agrega el astrónomo- desde el equivalente a la masa de Urano por año, a los que se “tragan” el equivalente a 30 planetas Jupiter en un período similar”.

Además del Observatorio Swift y BAT, se utilizaron más de 10 telescopios ópticos e infrarrojos terrestres en nuestro país (Chile) y otras partes del mundo. Ezequiel Treister, destaca que “se trata de un trabajo colaborativo, que requirió el trabajo combinado de telescopios en el hemisferio sur y el hemisferio norte, para poder estudiar los núcleos activos de galaxias distribuidos en todo el cielo. Las medidas de masa fueron posibles gracias a muchísimas observaciones realizadas desde desierto chileno”.

Uno de los resultados publicados en este estudio, liderado desde Chile, fue obtenido utilizando espectroscopía infrarroja para medir la masa de más de 300 agujeros negros supermasivos altamente oscurecidos. “Gracias a estos datos hemos podido medir la masa de los agujeros negros, detectando el movimiento de nubes rotando a alta velocidad en sus alrededores, incluyendo sistemas completamente oscurecidos donde esto no era posible. Esto demuestra la importancia de combinar múltiples observatorios” dice la Dra. Federica Ricci, quien fue investigadora postdoctoral FONDECYT en la Universidad Católica y que actualmente continúa su carrera de investigación en Italia.

Diego Bastarrica
Diego Bastarrica es periodista y docente de la Universidad Diego Portales de Chile. Especialista en redes sociales…
Astrónomos descubren la explosión cósmica más grande jamás vista
explosion cosmica mas grande jamas vista at2021lwx

Un grupo de astrónomos de la Universidad de Southampton, acaban de revelar la mayor explosión cósmica jamás vista, diez veces más brillante que cualquier supernova conocida y tres veces más brillante que el evento de interrupción de marea más brillante, donde una estrella cae en un agujero negro supermasivo.

Los hallazgos de la investigación se han publicado este viernes 12 de mayo en Monthly Notices of the Royal Astronomical Society.

Leer más
Vea la aterradora escala de un agujero negro supermasivo
agujero negro supermasivo aterradora escala

Esta semana es la semana de los agujeros negros, y la NASA está celebrando compartiendo algunas visualizaciones impresionantes de agujeros negros, incluida una visualización francamente inquietante para ayudarlo a imaginar cuán grande es un agujero negro supermasivo. Los agujeros negros supermasivos se encuentran en el centro de las galaxias (incluida la nuestra) y, en términos generales, cuanto más grande es la galaxia, más grande es el agujero negro.
Ilustración del agujero negro Sagitario A* en el centro de la Vía Láctea. Observatorio Internacional de Géminis/NOIRLab/NSF/AURA/J. DA Silva/(Spaceengine) Agradecimientos: M. Zamani (NOIRLab de NSF)
Mientras que un agujero negro típico pesa hasta alrededor de 10 veces la masa del sol, los agujeros negros supermasivos pueden pesar millones o incluso miles de millones de veces la masa del sol. Sin embargo, estos objetos son increíblemente densos, y es difícil imaginar cuán grande sería un objeto así. Ese es el punto de esta comparación de video, que muestra el tamaño de diferentes tipos de agujeros negros en comparación con nuestro sistema solar, escalados de acuerdo con sus sombras.

NASA Animation Sizes Up the Biggest Black Holes

Leer más
Inédita imagen de un agujero negro supermasivo arrojando un chorro de materia
agujero negro arrojando chorro de materia

Además de atraer cualquier cosa que se acerque a ellos, los agujeros negros ocasionalmente pueden expulsar materia a velocidades muy altas. Cuando las nubes de polvo y gas se acercan al horizonte de eventos de un agujero negro, parte de él caerá hacia adentro, pero algunos pueden ser redirigidos hacia afuera en ráfagas altamente energéticas, lo que resulta en dramáticos chorros de materia que se disparan a velocidades cercanas a la velocidad de la luz. Los chorros pueden propagarse por miles de años luz, con un chorro emergiendo de cada uno de los polos del agujero negro en un fenómeno que se cree que está relacionado con el giro de estos.
Los científicos que observan el núcleo de radio compacto de M87 han descubierto nuevos detalles sobre el agujero negro supermasivo de la galaxia. En la concepción de este artista, el chorro masivo de materia del agujero negro se ve elevándose desde el centro del agujero negro. Las observaciones en las que se basa esta ilustración representan la primera vez que el chorro y la sombra del agujero negro se han fotografiado juntos, dando a los científicos nuevos conocimientos sobre cómo los agujeros negros pueden lanzar estos poderosos chorros. S. Dagnello (NRAO/AUI/NSF)
Algunos de los chorros más grandes del universo conocido provienen de los enormes agujeros negros en el centro de las galaxias, llamados agujeros negros supermasivos. Y ahora, por primera vez, los astrónomos han fotografiado un agujero negro supermasivo expulsando uno de esos chorros. El agujero negro en cuestión es el famoso en el corazón de la galaxia Messier 87, que es conocida por ser el primer agujero negro fotografiado por una colaboración llamada Event Horizon Telescope (EHT). Usando una asociación similar de telescopios en todo el mundo, los astrónomos pudieron capturar este monstruoso agujero negro arrojando materia en un chorro.
Esta imagen de GMVA+ALMA muestra la sombra del chorro y el agujero negro de M87 juntos por primera vez, dando a los científicos el contexto necesario para comprender dónde se formó el poderoso chorro. Las nuevas observaciones también revelaron que el anillo del agujero negro, que se muestra en el recuadro, es un 50% más grande de lo que los científicos creían anteriormente. R.-S. Lu (SHAO), E. Ros (MPIfR), S. Dagnello (NRAO/AUI/NSF)
Las observaciones también han dado una nueva visión del agujero negro en sí. "Las imágenes originales del EHT revelaron solo una parte del disco de acreción que rodea el centro del agujero negro. Al cambiar las longitudes de onda de observación de 1,3 milímetros a 3,5 milímetros, podemos ver más del disco de acreción, y ahora el chorro, al mismo tiempo", dijo uno de los investigadores, Toney Minter, en un comunicado. "Esto reveló que el anillo alrededor del agujero negro es un 50% más grande de lo que creíamos anteriormente".

Las observaciones fueron tomadas con radiotelescopios, incluyendo conjuntos potentes como el Global mm-VLBI Array (GMVA) y el Atacama Large Millimeter/submillimeter Array (ALMA), que utilizan muchos platos más pequeños que trabajan juntos para observar fuentes de radio muy distantes. Al combinar los esfuerzos de diferentes observatorios, los astrónomos podrían obtener una mejor visión de este famoso agujero negro. Sabían que el agujero negro estaba emitiendo chorros, pero no sabían exactamente cómo o dónde se estaban formando esos chorros.

Leer más