Skip to main content
  1. Casa
  2. Salud
  3. Noticias
  4. News

Dispositivo detecta el COVID-19 en 30 segundos… con la flema

ROS Detector in Sputum Sample es el nombre de un dispositivo desarrollado por investigadores de la Universidad de Teherán, que podría detectar casos de COVID-19 en solo 30 segundos.

A diferencia de otras pruebas rápidas que utilizan la saliva para establecer un tamizaje, el ROS Detector in Sputum Sample se vale de la flema.

Recommended Videos

“Hemos desarrollado un método rápido para detectar la inflamación respiratoria en tiempo real”, afirmó Mohammad Abdolahad, profesor asociado de la Facultad de Ingeniería de la Universidad de Teherán.

La prueba utiliza un sistema de diagnóstico electroquímico para detectar especies reactivas de oxígeno (ROS, por sus siglas en inglés), como se conocen las moléculas inestables producidas por la inflamación respiratoria que contienen oxígeno y cuya acumulación puede dañar el ARN, el ADN y las proteínas y causar la muerte celular, detalló Gizmodo citando a la revista especializada IEEE Spectrum.

Según el investigador, el aparato es una herramienta rápida y fiable para identificar casos sospechosos de COVID-19, una de las falencias que a su juicio ha existido para evitar la propagación del virus.

Afirmó que este método es más rápido que los resultados de las pruebas moleculares, que pueden tardar un día o hasta una semana, y más precisa que las de antígenos, que ofrecen resultados en una hora o menos.

“La prueba también puede ayudar a informar a los médicos si el paciente tiene una mayor probabilidad de contraer COVID-19. Las enfermedades respiratorias pueden hacer que un paciente sea inmunorresistente y, al ser diagnosticado, el paciente ahora sabe que necesita tomar medidas adicionales”,  agregó Abdolahad.

Cómo se hace la prueba

Expertos advierten que el COVID-19 podría provocar diabetes
Getty Images/Digital Trends Graphic

Para hacerse la prueba, una persona debe toser para generar flema y escupirla en un tubo. La muestra en los tubos se analiza usando una sonda con un sensor desechable, fabricado con nanotubos de carbono de paredes múltiples.

El sensor se calibra según la presencia y la gravedad del COVID-19 en los pacientes. Los resultados se muestran después de 30 segundos en un monitor integrado a los nanotubos.

Calibrar el sensor para que se correlacione con la presencia y la gravedad del COVID-19 fue uno de los desafíos que enfrentaron los investigadores.

“Descubrimos que en algunas enfermedades respiratorias, como el asma y la neumonía aguda, hay un aumento de las ROS. La influenza estacional, por otro lado, induce una reducción en los niveles de ROS (en el) sistema inmunológico y suprime cierto aclaramiento bacteriano”, dijo Abdolahad.

El sistema ROS Detector in Sputum Sample se está utilizando en cuatro hospitales de Irán como una herramienta complementaria no invasiva en tiempo real y los creadores ya solicitaron una autorización para EEUU.

Rodrigo Orellana
Ex escritor de Digital Trends en Español
Google ayuda a detectar el cáncer de mama con ayuda de la IA
google ia deteccion temprana cancer de mama angiola harry sjcalew 1lm unsplash

Cada 19 de octubre se conmemora el Día Internacional de lucha contra el Cáncer de Mama, con el objetivo de concientizar acerca de esta enfermedad. En este contexto, Google difundió cómo trabaja en proyectos que combinan el poder de la inteligencia artificial (IA) con el conocimiento de los profesionales de la salud para crear herramientas de diagnóstico precisas y accesibles. Las investigaciones llevadas a cabo en varios diagnósticos detectaron una reducción del 9.4% de los falsos negativos y del 5.7% de los falsos positivos.
De acuerdo con la Organización Mundial de la Salud (OMS), el cáncer de mama es uno de los más comunes, siendo el 99% de los casos en mujeres. Asimismo, la Organización Panamericana de la Salud (OPS) afirma que el tratamiento puede ser altamente efectivo cuando la enfermedad se detecta a tiempo.
En este escenario, Adriana Noreña, vicepresidenta de Google para Hispanoamérica, reflexionó: “Como subrayé en mi participación en el Women 20 de Río de Janeiro, la inteligencia artificial tiene la capacidad de procesar y analizar enormes cantidades de datos en poco tiempo, identificar patrones complejos y aprender de forma contínua a través de sus algoritmos para mejorar su precisión, lo cual la convierte en una gran aliada para los profesionales de la salud”. Y agregó: “es crucial que haya cada vez más mujeres involucradas en el desarrollo de esta tecnología. Al incorporar nuestra perspectiva desde el momento cero, podemos garantizar que la IA no solo sea técnicamente avanzada, sino también nos permitirá crear soluciones íntimamente relacionadas con nuestro género, así como más equitativas y efectivas”.
En línea con estos esfuerzos por mejorar la detección temprana, entre 2016 y 2018, Google comenzó a implementar el uso del aprendizaje profundo -deep learning-, una de las áreas donde la IA emplea redes neuronales artificiales para aprender de grandes conjuntos de datos para realizar tareas complejas, con el fin de asistir a los médicos en la detección de la metástasis. Esta herramienta de análisis de nódulos linfáticos (Lymph Node Assistant -LYNA, por sus siglas en inglés-), es entrenada por medio de imágenes médicas, como radiografías, tomografías o imágenes patológicas, y clasificadas previamente por expertos, para que la IA pueda identificar los macro y micro patrones de la enfermedad. Así, LYNA tiene la capacidad de detectar la localización de la metástasis que, en muchos casos, es casi imperceptible al ojo humano, permitiendo que los médicos puedan acelerar el proceso de diagnóstico y, en consecuencia, adelantar el inicio del tratamiento. 
En 2021, Google Health realizó una investigación clínica junto con Northwestern Medicine para explorar cómo la IA podría acelerar el diagnóstico del cáncer de mama, optimizando el proceso desde la mamografía inicial hasta el diagnóstico final. Comenzaron la investigación recopilando imágenes mamográficas de alta calidad provenientes de diversos pacientes, las cuales fueron clasificadas por expertos en salud para entrenar el modelo de IA ante la detección de cáncer, la identificación de características tumorales, entre otros aspectos.
Posteriormente, el modelo se probó en un entorno clínico real, donde las personas que se sometían a mamografías podían optar por que sus resultados fueran analizados por la IA junto con la evaluación de los radiólogos. Estos arrojaron datos alentadores: se redujeron los falsos negativos en un 9.4% y los falsos positivos en un 5.7%, en comparación con la práctica clínica estándar. Además, la IA demostró su capacidad de analizar una mamografía en menos de dos minutos, lo que permite obtener resultados más rápidos para las pacientes, acelerar tanto el diagnóstico como el tratamiento, al mismo tiempo que reduce los costos asociados a la atención y los tratamientos tardíos.

Premios Nobel: Hallazgos en beneficio de la salud
La semana pasada, Geoffrey Hinton, ex investigador de Google, fue galardonado junto a John Hopfield con el Premio Nobel de Física 2024 por sus descubrimientos en el campo del aprendizaje automático con redes neuronales artificiales (ANN por sus siglas en inglés), que sentaron las bases para el reconocimiento a través de la IA de patrones en imágenes, lenguajes y en información clínica que hoy se utiliza en el campo de la salud y en otras disciplinas.
Como se describe en este documento emitido por el comité del premio Nobel, este descubrimiento fue clave en el desarrollo de la herramienta para la predicción de las estructuras de cualquier proteína en tres dimensiones denominado AlphaFold, motivo por el cual dos científicos de Google DeepMind, Demis Hassabis y John Jumper, obtuvieron también este año el Premio Nobel de Química. AlphaFold fue abierta por Google a la comunidad científica de forma gratuita y ya fue utilizado por más de dos millones de investigadores de más de 190 países.

Leer más
Las mejores aplicaciones de entrenamiento gratuitas para iOS y Android
aplicaciones de entrenamiento gratuitas para ios y android mejores apps ejercecios ggratis

Si aún no puedes volver a tu gimnasio, se te ha terminado esa costosa membresía o estás buscando hacer un buen ejercicio en casa o en la oficina, aprovecha una serie de excelentes aplicaciones accesibles que te apoyarán a ejercitarte desde tu celular. Hay muchas apps de pago listas para hacerte sudar, y algunas de ellas pueden valer la pena en las circunstancias adecuadas. Pero no siempre apetece pagar. Ya sea que busques mantenerte en movimiento o gastar algo de tiempo, aquí hay una lista de las mejores aplicaciones de entrenamiento gratuitas para iOS y Android, que te ayudarán a sudar donde quiera que estés.

(Estas son las mejores aplicaciones de fitness gratuitas, sin duda, pero si deseas explorar otras opciones, incluidas las aplicaciones de pago, tenemos listas de las mejores aplicaciones de fitness para Android y las mejores aplicaciones de fitness para iOS también).
Nike Training Club

Leer más
Se filtran 5,3 millones de registros de salud en México
La imagen muestra a un médico cirujano durante un procedimiento.

Cybernews informa que sus equipos de investigación encontraron una base de datos desprotegida de 500 GB de una empresa mexicana de atención médica el 26 de agosto de 2024. La base de datos expone información confidencial como nombres, números de identificación personal (CURP), números de teléfono, descripciones de solicitudes de pago y más.

La cantidad total de personas afectadas asciende a 5,3 millones, lo que representa aproximadamente el 4% de la población del país, según señala Cybernews. El informe de Cybernews indica que el error de seguridad se produjo con un uso "mal configurado" de una herramienta de visualización de datos llamada Kibana, que parece haber quedado sin autenticar.

Leer más