Skip to main content

Telescopio espacial James Webb: todo lo que debes saber

Rastrear el origen de las primeras galaxias y buscar señales de habitabilidad en exoplanetas. Este es el objetivo del telescopio espacial James Webb, el instrumento de este tipo más grande y poderoso jamás construido por la humanidad y que reemplazará al histórico Hubble. Te contamos todo lo que necesitas saber sobre esta trascendental misión que está dando sus primeros pasos.

Te va a interesar:

Después de 25 años de desarrollo, el James Webb fue lanzado al espacio el 25 de diciembre de 2021, en una de las misiones más ambiciosas en la historia de la NASA y para la cual también se ha aliado con la Agencia Espacial Europea (ESA) y la Agencia Espacial de Canadá. Y un mes más tarde  concretó su primer hito: la llegada al punto de su órbita definitiva.

El telescopio tiene la capacidad de explorar con detalles nunca antes vistos los planetas y cuerpos del Sistema Solar, recoger señales de la formación de las primeras galaxias, buscar nuevas estrellas en formación y analizar características clave de los agujeros negros, entre otras funciones.

Qué es el telescopio James Webb

Telescopio James Webb
Getty Images

El telescopio espacial James Web comenzó a ser construido por la NASA en 1996, como parte del proceso de reemplazo programado del Hubble.

Originalmente llamado Next Generation Space Telescope (NGST), desde 2002 adoptó el nombre del segundo administrador de la NASA y pieza clave en el desarrollo de programa Apolo.

Según la NASA, su tecnología permitirá estudiar cada fase de la historia cósmica, desde el interior del Sistema Solar hasta las galaxias observables más distantes del universo temprano.

Con un espejo primario de 3 pies de ancho, cuatro instrumentos de medición y un panel solar del tamaño de una cancha de tenis, estas son las principales especificaciones del telescopio espacial:

  • Tamaño del espejo primario: 3 pies (6.5 metros) de ancho.
  • Forma del espejo: se compone de 18 segmentos hexagonales desplegables chapados en oro.
  • Panel solar: el panel desplegable de cinco capas es del tamaño de una cancha de tenis.
  • Instrumentos: cámara de infrarrojo cercano (NIRCam), espectrógrafo de infrarrojo cercano (NIRSpec), instrumento de infrarrojo medio (MIRI) y generador de imágenes de infrarrojo cercano y espectrógrafo sin rendija (NIRISS) con el sensor de guía fina (FGS).
  • Longitud de onda: visible, infrarrojo cercano, Infrarrojo medio (0,6-28,5 micrómetros).
  • Distancia de viaje: 1 millón de millas (1,5 millones de kilómetros) de la Tierra.
  • Ubicación espacial: orbitando el Sol alrededor del segundo punto de Lagrange (L2).

Cuáles son los objetivos del telescopio espacial James Webb

Telescopio James Webb
NASA

Se estima que será capaz de contemplar la época en que se formaron las primeras estrellas y galaxias, hace más de 13,500 millones de años, una parte del espacio y el tiempo nunca antes visto.

¿Cómo lo hará? Debido a la expansión continua del universo, la luz ultravioleta y visible emitida por los primeros objetos luminosos se ha estirado o “corrido al rojo”. Hoy llega como luz infrarroja. Esas son las señales que buscará el Webb, ya que está diseñado para capturarlas con una “resolución y sensibilidad sin precedentes”, según la NASA.

“El telescopio infrarrojo del Webb explorará una amplia gama de cuestiones científicas para ayudarnos a comprender los orígenes del universo y nuestro lugar en él”, afirma la NASA.

Se espera que el telescopio también sea útil para estudiar planetas y otros cuerpos del Sistema Solar para determinar su origen y evolución y compararlos con exoplanetas, cono se conocen los planetas que orbitan otras estrellas.

Precisamente los exoplanetas son otro de sus objetos de interés. Observará aquellos que están ubicados en las zonas habitables de sus respectivas estrellas, es decir, las regiones donde un planeta tiene la capacidad de albergar agua líquida en su superficie; y tendrá la capacidad de determinar dónde hay características de habitabilidad.

Otra de sus novedades es su capacidad para examinar la luz de las estrellas filtrada a través de atmósferas planetarias, lo que permitirá conocer sus composiciones químicas.

Dónde orbita el telescopio James Webb

Órbita del telescopio James Webb
Imagen utilizada con permiso del titular de los derechos de autor

El Webb está en órbita desde el segundo punto de Lagrange (L2), una de las cinco posiciones del espacio donde la atracción gravitacional del Sol y la Tierra equilibra la fuerza centrípeta requerida para que una nave espacial se mueva con ellos.

Por estas condiciones, los puntos de Lagrange son particularmente útiles para reducir el combustible requerido para que una nave espacial permanezca en posición.

La ubicación también permite comunicaciones continuas con Webb a través de Deep Space Network, una matriz internacional de antenas gigantes administradas por el Laboratorio de Propulsión a Chorro (JPL) de la NASA.

Puesta en marcha del telescopio James Webb

James Webb Space Telescope Deployment Sequence (Nominal)

Tras su lanzamiento, el telescopio viajó aproximadamente un millón de millas de la Tierra para entrar en órbita e inició su puesta en operaciones, desplegando sus espejos, parasoles y otros sistemas más pequeños,

Luego, debe enfriarse de forma gradual a temperaturas de funcionamiento criogénicas, antes de que la NASA pueda comenzar a operar con seguridad los instrumentos científicos (alrededor de 40 kelvin, o menos de -380° Fahrenheit).

Para que los segmentos del espejo primario de Webb actúen como una única óptica, cada uno de los 18 segmentos debe estar alineado dentro de una fracción de la longitud de onda de la luz del infrarrojo cercano, algo así como una décima parte del grosor de un cabello humano.

El telescopio comenzará a recopilar sus primeras imágenes una vez terminado su proceso de puesta en marcha de seis meses, lo que podría ocurrir en junio o julio de 2022.

Recomendaciones del editor

Rodrigo Orellana
Ex escritor de Digital Trends en Español
Twitter, Facebook, Instagram, WhatsApp, Telegram, criptomonedas, metaverso, son algunos de los temas que aborda el periodista…
James Webb ofrece una segunda vista de una estrella que explotó
james webb estrella exploto supernova cassiopeia a  cas

Cuando las estrellas masivas se quedan sin combustible y llegan al final de sus vidas, su fase final puede ser una explosión masiva llamada supernova. Aunque el brillante destello de luz de estos eventos se desvanece rápidamente, otros efectos son más duraderos. A medida que las ondas de choque de estas explosiones viajan al espacio e interactúan con el polvo y el gas cercanos, pueden esculpir hermosos objetos llamados remanentes de supernova.

Uno de estos remanentes de supernova, Cassiopeia A, o Cas A, fue fotografiado recientemente utilizando el instrumento NIRCam del Telescopio Espacial James Webb. Situada a 11.000 años luz de distancia en la constelación de Casiopea, se cree que es una estrella que explotó hace 340 años (vista desde la Tierra) y ahora es uno de los objetos de radio más brillantes del cielo. Esta imagen muestra la capa de material expulsada por la explosión interactuando con el gas que la estrella masiva emitió en sus últimas fases de vida.
Una nueva imagen de alta definición de la NIRCam (Cámara de Infrarrojo Cercano) del Telescopio Espacial James Webb revela detalles intrincados del remanente de supernova Cassiopeia A (Cas A), y muestra la capa de material en expansión que se estrella contra el gas arrojado por la estrella antes de que explotara. NASA, ESA, CSA, STScI, Danny Milisavljevic (Universidad de Purdue), Ilse De Looze (UGent), Tea Temim (Universidad de Princeton)
"Con la resolución de NIRCam, ahora podemos ver cómo la estrella moribunda se hizo añicos cuando explotó, dejando filamentos similares a pequeños fragmentos de vidrio", dijo el investigador principal Danny Milisavljevic de la Universidad de Purdue en un comunicado. "Es realmente increíble después de todos estos años estudiando Cas A resolver ahora esos detalles, que nos están proporcionando una visión transformadora de cómo explotó esta estrella".

Leer más
El Telescopio Espacial Hubble vuelve a funcionar
principales observatorios espaciales hubble observatorio

El Telescopio Espacial Hubble ha vuelto a funcionar a pleno rendimiento después de pasar varias semanas en modo seguro debido a un problema con uno de sus componentes. El telescopio experimentó por primera vez problemas con uno de sus giroscopios el 19 de noviembre, y entró y salió del modo seguro varias veces en los días siguientes. Ha permanecido en modo seguro desde el 23 de noviembre, pero volvió a estar en línea el viernes 8 de diciembre.

El problema fue causado por uno de los tres giroscopios operativos del telescopio, que son dispositivos que ayudan a apuntar el telescopio en la dirección correcta. Aunque habría sido posible operar el telescopio con solo uno de estos, eso habría resultado en una pérdida de tiempo de observación, ya que llevaría más tiempo mover el telescopio a un nuevo objetivo entre observaciones. Con los tres giroscopios ahora en uso de nuevo, el telescopio ha vuelto a las operaciones científicas.
El Hubble orbita a más de 300 millas sobre la Tierra visto desde el transbordador espacial. NASA
Actualmente, dos de los instrumentos del telescopio están en línea, y los otros instrumentos volverán a estar en línea en las próximas semanas. "Las dos cámaras principales del Hubble, la Cámara de Campo Amplio 3 y la Cámara Avanzada para Sondeos, reanudaron las observaciones científicas el viernes", escribió la NASA en una actualización. "El equipo planea restaurar las operaciones del Espectrógrafo de Orígenes Cósmicos y el Espectrógrafo de Imágenes del Telescopio Espacial a finales de este mes".

Leer más
¿Hay un exoplaneta donde llueve arena?
exoplaneta donde llueve arena wasp 107b

Los exoplanetas vienen en muchas formas, desde planetas densos y rocosos como la Tierra y Marte hasta gigantes gaseosos como Júpiter y Saturno. Pero algunos planetas descubiertos fuera de nuestro sistema solar son incluso menos densos que los gigantes gaseosos y son un tipo conocido informalmente como planetas super-puff o algodón de azúcar. Uno de los exoplanetas menos densos conocidos, WASP-107b, fue investigado recientemente con el Telescopio Espacial James Webb (JWST) y el clima del planeta parece ser tan extraño como su hinchazón.

El planeta es más atmósfera que núcleo, con una atmósfera esponjosa en la que Webb detectó vapor de agua y dióxido de azufre. Lo más extraño de todo es que Webb también vio nubes de arena de silicato, lo que sugiere que lloverá arena entre las capas superior e inferior de la atmósfera. El planeta es casi tan grande como Júpiter, pero tiene una masa diminuta similar a la de Neptuno.
Concepto artístico del exoplaneta WASP-107b y su estrella madre. A pesar de que la estrella anfitriona bastante fría emite una fracción relativamente pequeña de fotones de alta energía, pueden llegar a las profundidades de la atmósfera esponjosa del planeta. Ilustración: Escuela de Artes LUCA, Bélgica/ Klaas Verpoest; Ciencia: Achrène Dyrek (CEA y Université Paris Cité, Francia), Michiel Min (SRON, Países Bajos), Leen Decin (KU Leuven, Bélgica) / Equipo europeo MIRI EXO GTO / ESA / NAS.
"El JWST está revolucionando la caracterización de exoplanetas, proporcionando información sin precedentes a una velocidad notable", dice el autor principal del estudio, Leen Decin de KU Leuven, en un comunicado. "El descubrimiento de nubes de arena, agua y dióxido de azufre en este exoplaneta esponjoso por el instrumento MIRI del JWST es un hito fundamental. Remodela nuestra comprensión de la formación y evolución planetaria, arrojando nueva luz sobre nuestro propio sistema solar".

Leer más