Skip to main content

James Webb investiga el misterio de dónde viene el agua de la Tierra

Por salvaje que parezca, los científicos tienen la teoría de que el agua en la Tierra en realidad no se originó aquí: la primera agua puede haber sido traída a nuestro planeta por un cometa. Para entender si ese es el caso, los astrónomos miran a los cometas que se encuentran comúnmente en el cinturón de asteroides entre Marte y Júpiter, y una investigación reciente utilizando el Telescopio Espacial James Webb ha identificado una pista en este misterio de larga data.

Los investigadores utilizaron el instrumento Espectrógrafo de Infrarrojo Cercano de Webb para observar la composición de un cometa en el cinturón de asteroides, y encontraron evidencia de vapor de agua alrededor de un cometa en esta área por primera vez. Mirando el cometa 238P/Read mostró vapor cercano, apoyando la idea de que el agua podría ser transportada por un cometa de este tipo. Si bien muchos cometas provienen de lugares más distantes como la lejana nube de Oort, que está muy lejos del sol, donde es más fácil que el hielo de agua sobreviva, este cometa en particular cuelga en el cinturón principal de asteroides.

Esta ilustración del cometa 238P/Read muestra el cometa del cinturón principal sublimándose: su hielo de agua se vaporiza a medida que su órbita se acerca al Sol. Esto es significativo, ya que la sublimación es lo que distingue a los cometas de los asteroides, creando su cola distintiva y halo nebuloso, o coma. Es especialmente importante para el cometa Read, ya que es uno de los 16 cometas identificados del cinturón principal que se encuentran en el cinturón de asteroides, a diferencia del más frío Cinturón de Kuiper o la Nube de Oort, más distantes del Sol. El cometa Read fue uno de los tres cometas utilizados para definir la clase de cometas del cinturón principal en 2006.
Esta ilustración del cometa 238P/Read muestra el cometa del cinturón principal sublimándose: su hielo de agua se vaporiza a medida que su órbita se acerca al Sol. Esto es significativo, ya que la sublimación es lo que distingue a los cometas de los asteroides, creando su cola distintiva y halo nebuloso, o coma. Es especialmente importante para el cometa Read, ya que es uno de los 16 cometas identificados del cinturón principal que se encuentran en el cinturón de asteroides, a diferencia del más frío Cinturón de Kuiper o la Nube de Oort, más distantes del Sol. NASA, ESA

Eso ayuda a los astrónomos a entender cómo el agua pudo haber llegado a la Tierra. «Nuestro mundo empapado de agua, lleno de vida y único en el universo hasta donde sabemos, es un misterio: no estamos seguros de cómo llegó toda esta agua aquí», explicó una de las investigadoras, Stefanie Milam, en un comunicado. «Comprender la historia de la distribución del agua en el sistema solar nos ayudará a comprender otros sistemas planetarios, y si podrían estar en camino de albergar un planeta similar a la Tierra».

«Con las observaciones de Webb del cometa Read, ahora podemos demostrar que el hielo de agua del sistema solar temprano se puede preservar en el cinturón de asteroides», dijo el investigador Michael Kelly.

Sin embargo, había algo extraño en los datos de este cometa. Si bien los resultados mostraron que el vapor de agua estaba presente, no se detectó dióxido de carbono, lo que se esperaba. Los cometas generalmente llevan alrededor del 10% de dióxido de carbono, por lo que es extraño no encontrar ninguno. Podría ser que el cometa se formó en un área inusualmente cálida donde el dióxido de carbono no estaba presente, o podría ser que el cometa solía tener dióxido de carbono pero lo perdió con el tiempo a medida que se calentaba.

Para obtener más información, los investigadores quieren observar más cometas en el cinturón de asteroides para ver si tienen composiciones similares, algo que ahora es posible gracias a los poderosos instrumentos de Webb.

«Estos objetos en el cinturón de asteroides son pequeños y débiles, y con Webb, finalmente podemos ver lo que está pasando con ellos y sacar algunas conclusiones. ¿Otros cometas del cinturón principal también carecen de dióxido de carbono? De cualquier manera, será emocionante averiguarlo», dijo la coautora Heidi Hammel.

La investigación se publica en la revista Nature.

Diego Bastarrica
Diego Bastarrica es periodista y docente de la Universidad Diego Portales de Chile. Especialista en redes sociales…
El telescopio James Webb observa la atmósfera de un mundo infernal rocoso
telescopio espacial james webb atmosfera mundo infernal rocoso 55 cancri e

El concepto de este artista muestra cómo podría ser el exoplaneta 55 Cancri e. También llamado Janssen, 55 Cancri e es una llamada súper-Tierra, un planeta rocoso significativamente más grande que la Tierra pero más pequeño que Neptuno, que orbita su estrella a una distancia de solo 2,25 millones de kilómetros (0,015 unidades astronómicas), completando una órbita completa en menos de 18 horas. NASA, ESA, CSA, R. Crawford (STScI)
Cuando se trata de aprender sobre exoplanetas, o planetas más allá de nuestro sistema solar, el telescopio espacial James Webb proporciona más información que nunca. Durante la última década, más o menos, se han descubierto miles de exoplanetas, con detalles disponibles sobre estos mundos, como sus órbitas y su tamaño o masa. Pero ahora estamos empezando a aprender cómo son realmente estos planetas, incluidos los detalles de sus atmósferas. Webb investigó recientemente la atmósfera alrededor del exoplaneta 55 Cancri e, encontrando lo que podría ser la primera atmósfera de un planeta rocoso descubierto fuera del sistema solar.

El planeta en cuestión, 55 Cancri e, no es un lugar acogedor. La estrella que lo alberga es similar al Sol, pero la órbita del planeta está tan cerca de ella, a solo 1,4 millones de millas de distancia, que es probable que su superficie sea un océano burbujeante de magma. Incluso se le conoce como el "planeta del infierno". Pero a pesar de las condiciones extremas allí, los astrónomos se han preguntado durante mucho tiempo si el planeta podría albergar una atmósfera o si es demasiado caliente y bombardeado por demasiada radiación.

Leer más
James Webb observa un exoplaneta extremadamente caliente con vientos de 5.000 mph
descubren exoplaneta extremadamente caliente con vientos cinco mil millas wasp 43b

Los astrónomos que utilizan el telescopio espacial James Webb han modelado el clima en un exoplaneta distante, revelando vientos que azotan el planeta a velocidades de 5,000 millas por hora.

Los investigadores observaron el exoplaneta WASP-43 b, ubicado a 280 años luz de distancia. Es un tipo de exoplaneta llamado Júpiter caliente que tiene un tamaño y una masa similares a Júpiter, pero orbita mucho más cerca de su estrella a solo 1,3 millones de millas de distancia, mucho más cerca que Mercurio del Sol. Está tan cerca de su estrella que la gravedad lo mantiene en su lugar, con un lado siempre mirando hacia la estrella y el otro siempre mirando hacia el espacio, de modo que un lado (llamado lado diurno) está ardiendo y el otro lado (llamado lado nocturno) es mucho más frío. Esta diferencia de temperatura crea vientos épicos que azotan el ecuador del planeta.
El concepto de este artista muestra cómo podría ser el exoplaneta gigante gaseoso WASP-43 b. WASP-43 b es un planeta del tamaño de Júpiter que gira alrededor de una estrella a unos 280 años luz de distancia en la constelación de Sextans. NASA, ESA, CSA, Ralf Crawford (STScI)
"Con el Hubble, pudimos ver claramente que hay vapor de agua en el lado diurno. Tanto el Hubble como el Spitzer sugirieron que podría haber nubes en el lado nocturno", explicó el autor principal de la investigación, Taylor Bell, del Instituto de Investigación Ambiental del Área de la Bahía, en un comunicado. "Pero necesitábamos mediciones más precisas de Webb para comenzar a mapear realmente la temperatura, la cobertura de nubes, los vientos y la composición atmosférica más detallada alrededor del planeta".

Leer más
James Webb captura el borde de la hermosa Nebulosa Cabeza de Caballo
telescopio espacial james webb nebulosa cabeza de caballo cola

Una nueva imagen del telescopio espacial James Webb muestra la vista infrarroja más nítida hasta la fecha de una parte de la famosa Nebulosa Cabeza de Caballo, una icónica nube de polvo y gas que también se conoce como Barnard 33 y se encuentra a unos 1.300 años luz de distancia.

La Nebulosa Cabeza de Caballo es parte de una gran nube de gas molecular llamada Orión B, que es una región de formación estelar muy concurrida donde están naciendo muchas estrellas jóvenes. Esta nebulosa se formó a partir de una nube de material que se derrumba y que está iluminada por una estrella brillante y caliente ubicada cerca. La imagen muestra la parte superior de la nebulosa, atrapando la sección que forma la "crin del caballo".
El telescopio espacial James Webb de la NASA, la Agencia Espacial Europea y la Agencia Espacial Canadiense ha capturado las imágenes infrarrojas más nítidas hasta la fecha de uno de los objetos más distintivos de nuestros cielos, la Nebulosa Cabeza de Caballo. Estas observaciones muestran una parte de la icónica nebulosa bajo una luz completamente nueva, capturando su complejidad con una resolución espacial sin precedentes. ESA/Webb, NASA, CSA, K. Misselt (Universidad de Arizona) y A. Abergel (IAS/Universidad Paris-Saclay, CNRS)
Esta imagen fue tomada con el instrumento NIRCam de Webb, que mira en la longitud de onda del infrarrojo cercano (justo más allá del rango de lo que es visible para el ojo humano). Muestra muchas galaxias de fondo y estrellas brillantes, así como la nube de material en la parte inferior.

Leer más