Skip to main content
  1. Home
  2. Tendencias
  3. Noticias
  4. News

Así es como la Venus atrapamoscas captura a sus presas

Add as a preferred source on Google

La Venus atrapamoscas (Dionaea muscioula) es, probablemente, la planta carnívora más famosa que existe.

Esta especie tiene la fascinante capacidad de encerrar y capturar a los insectos en un rápido y fatal proceso que históricamente ha asombrado a los investigadores.

Recommended Videos

Ahora, los científicos pueden conocer cómo esta planta consigue capturar a sus presas.

Hasta ahora se sabía que el cierre de una Venus se debía a dos estímulos, los cuales permitían que se activara la “trampa”.

Estas dos condiciones hacen referencia a que los pelos sensoriales al interior de esta trampa necesitan sentir el contacto de la presa dos veces en la región de la “boca” antes de cerrarse.

Ambos contactos deben ocurrir en un periodo de 30 segundos.

Si el espacio de tiempo entre el primer y segundo contacto dura más de 30 segundos, la Venus “olvida” el primer toque y no se cierra.

Esto llevó a la interrogante de cómo era posible que la planta “recordara” algo y de qué forma podía calcular el paso del tiempo, específicamente el transcurso de estos 30 segundos.

La Venus atrapamoscas capturando a una presa.
Imagen utilizada con permiso del titular de los derechos de autor

Antecedentes

En la década de los ochenta, investigadores alemanes propusieron que el cierre se producía por un incremento en los iones de calcio de la planta, lo cual, no obstante, nunca consiguieron probar.

Ahora, un estudio dirigido por el Instituto Nacional de Biología Básica de Japón descubrió una forma de visualizar las concentraciones de calcio intracelular dentro de la planta para ver si esta sustancia química podía sustentar el poder de la planta para “recordar” y “olvidar”.

Para conseguir esto se ayudaron de la bacteria agrobacterium, que es capaz de transferir genes a las plantas.

Después diseñaron en laboratorio Venus transgénica, equipadas con un sensor de calcio, una proteína que emite fluorescencia verde cuando se junta con el calcio.

Los resultados mostraron que cuando se tocaba por primera vez un cabello sensorial, comenzaba a brillar casi inmediatamente, con una onda de fluorescencia que después se extendía hacia el resto de la planta.

Esto revelaba el aumento temporal en la señalización del calcio.

«La excitación eléctrica de las células trampa se traduce así en un aumento en la concentración de calcio. Si aparece un potencial de acción adicional, su valor de calcio se agrega a la primera señal. Usando este reloj de calcio, la trampa de la Venus puede contar el número de potenciales de acción condicionados por estimulación táctil», explican los autores del estudio.

Al mismo tiempo, explican los científicos japoneses, que si no se siente otro contacto lo suficientemente rápido, esta concentración de calcio intracelular se disipa, lo que haría que la trampa se detenga.

https://twitter.com/nresearchnews/status/1315319572304551937?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1315319572304551937%7Ctwgr%5Eshare_3%2Ccontainerclick_1&ref_url=https%3A%2F%2Fes.gizmodo.com%2Fajax%2Finset%2Fiframe%3Fid%3Dtwitter-1315319572304551937autosize%3D1

Felipe Sasso
Former Digital Trends Contributor
Felipe Sasso es periodista y escritor. Desde temprana edad manifestó una importante inquietud hacia la escritura y las…
Esta piel artificial le daría una sensibilidad ‘humana’ a los robots
Head, Person, Face

Los robots mejoran en ver, oír y moverse, pero el tacto siempre ha sido la pieza que faltaba. En el CES 2026, Ensuring Technology presentó un nuevo tipo de piel artificial que finalmente podría dar a los robots algo parecido a la de la sensibilidad humana, ayudándoles a sentir el mundo en lugar de simplemente chocar con él.

La última tecnología de detección táctil de la compañía está diseñada para ayudar a los robots a comprender la presión, la textura y el contacto de formas que van más allá de simples sensores táctiles. En el centro del anuncio hay dos productos llamados Tacta y HexSkin, ambos orientados a resolver un problema de larga duración en robótica.

Read more
Investigadores chinos desarrollan baterías de sodio-azufre de alto voltaje
Can, Spray Can, Tin

Un equipo de investigadores en China acaba de desvelar un nuevo diseño de batería de sodio y azufre que podría cambiar fundamentalmente las matemáticas sobre el almacenamiento de energía. Al apoyarse en la misma química que históricamente ha hecho que el azufre sea un dolor de cabeza para los ingenieros, han logrado construir una célula increíblemente barata de fabricar pero que aún así tiene un enorme impacto energético.

El diseño, que actualmente se está probando en el laboratorio, utiliza ingredientes muy baratos: azufre, sodio, aluminio y un electrolito a base de cloro. En las primeras pruebas, la batería alcanzó densidades energéticas superiores a 2.000 vatios-hora por kilogramo, cifra que supera con creces a las baterías de iones de sodio actuales e incluso da competencia a las pilas de litio de primera gama.

Read more
El robot humanoide de Atlas intentó un salto mortal hacia atrás. ¿Qué pasó
Robot

En la reciente feria tecnológica CES 2026 en Las Vegas, Boston Dynamics mostró la última versión de su avanzado robot humanoide Atlas, una máquina en la que lleva trabajando más de una década.

El robot salió al escenario con un paso tan natural que debió de hacer que muchos espectadores se preguntaran si el equipo detrás del robot había conseguido meter a un humano dentro. Pero era, en realidad, un robot 100% humanoide.

Read more