Skip to main content
  1. Home
  2. Salud
  3. Noticias
  4. News

Vacuna de AstraZeneca ofrece eficacia menor con nuevos datos

La vacuna de Oxford/AstraZeneca contra el COVID-19 ofrece una eficacia menor a la informada en un inicio, según los datos actualizados de su ensayo fase 3 en Estados Unidos.

El laboratorio británico había informado una eficacia de 79 por ciento para prevenir la enfermedad provocada por el virus SARS-CoV-2, pero agencias públicas estadounidenses cuestionaron la vigencia de esta información.

Recommended Videos

Con los datos corregidos, la vacuna brinda una eficacia de 76 por ciento en la protección de casos sintomáticos del COVID-19. De cualquier manera, la efectividad contra enfermedades graves y hospitalizaciones se mantuvo en 100 por ciento.

 El rendimiento en pacientes de 65 años o más subió de 80 a 85 por ciento  con los datos actualizados. Además, el nuevo reporte sumó 50 casos sintomáticos adicionales a los 140 dados a conocer en el informe original, sobre un total de 32,000 participantes.

Según AstraZeneca, la vacuna fue “bien tolerada” entre los participantes y no se identificaron problemas de seguridad.

Estos inconvenientes se habían sumado a una serie de reportes en Europa sobre un eventual vínculo del antídoto de AstraZeneca con casos de coágulos de sangre, lo que llevó a una decena de países a suspender su aplicación de manera temporal.

Aunque la Organización Mundial de la Salud (OMS) y la Agencia Europea de Medicamentos (EMA) han defendido los beneficios de la vacuna, también han reconocido que se requiere más investigación para descartar cualquier relación.

Advertencia poco habitual

La imagen muestra una vacuna junto al logo de AstraZeneca.
Shutterstock.

El 23 de marzo, el Instituto Nacional de Alergias y Enfermedades Infecciosas (NIAID) emitió una inusual advertencia pública sobre la validez de los datos publicados por AstraZeneca.

El NIAID había dado a conocer que la Junta de Monitoreo de Datos y Seguridad (DSMB) le había informado que el laboratorio británico podría haber compartido información desactualizada en la entrega de los resultados.

“El DSMB expresó su preocupación de que AstraZeneca pudiera haber incluido información desactualizada de ese ensayo, que puede haber proporcionado una vista incompleta de los datos de eficacia”, dijo en una declaración pública.

Además del NIAID y el propio laboratorio, la notificación también fue enviada a la Autoridad de Investigación y Desarrollo Biomédico Avanzado de Estados Unidos (BARDA), entidad que financió la investigación de AstraZeneca.

“Instamos a la empresa a trabajar con el DSMB para revisar los datos de eficacia y garantizar que los más precisos y actualizados se hagan públicos lo antes posible”, había dicho el NAID.

El NIAID aclaró que la autorización y las pautas para el uso de la vacuna en Estados Unidos serán determinadas por la Administración de Alimentos y Medicamentos (FDA) y los Centros para el Control y la Prevención de Enfermedades (CDC) “después de una revisión exhaustiva de los datos por comités asesores independientes”.

Fauci da señal de tranquilidad

COVID-19: experto en inmunología le pone fecha a la vacuna
The White House/ Flickr

Para calmar las aguas, Anthony Fauci, asesor para la pandemia del presidente Joe Biden y director del NIAID, dijo el martes 23 que era probable que la vacuna de AstraZeneca/Oxford sea “muy buena”, aunque los datos presentados no sean “del todo precisos”.

“Esta es probablemente una vacuna muy buena […] Si lo miras, los datos son bastante buenos, pero cuando los incluyeron en el comunicado de prensa, no eran del todo precisos”, dijo Anthony Fauci, considerado el epidemiólogo principal de Estados Unidos.

Fauci explicó que la Junta de Monitoreo expresó su preocupación sobre cómo la compañía presentó datos que “estaban algo desactualizados y de hecho podrían ser un poco engañosos”. De cualquier manera, reconoció que el incidente fue un hecho “desafortunado” y “un error no forzado” que podría alentar las dudas sobre las vacunas.

* Actualizada con nuevo reporte de eficacia.

Rodrigo Orellana
Former Digital Trends Contributor
Google ayuda a detectar el cáncer de mama con ayuda de la IA
google ia deteccion temprana cancer de mama angiola harry sjcalew 1lm unsplash

Cada 19 de octubre se conmemora el Día Internacional de lucha contra el Cáncer de Mama, con el objetivo de concientizar acerca de esta enfermedad. En este contexto, Google difundió cómo trabaja en proyectos que combinan el poder de la inteligencia artificial (IA) con el conocimiento de los profesionales de la salud para crear herramientas de diagnóstico precisas y accesibles. Las investigaciones llevadas a cabo en varios diagnósticos detectaron una reducción del 9.4% de los falsos negativos y del 5.7% de los falsos positivos.
De acuerdo con la Organización Mundial de la Salud (OMS), el cáncer de mama es uno de los más comunes, siendo el 99% de los casos en mujeres. Asimismo, la Organización Panamericana de la Salud (OPS) afirma que el tratamiento puede ser altamente efectivo cuando la enfermedad se detecta a tiempo.
En este escenario, Adriana Noreña, vicepresidenta de Google para Hispanoamérica, reflexionó: “Como subrayé en mi participación en el Women 20 de Río de Janeiro, la inteligencia artificial tiene la capacidad de procesar y analizar enormes cantidades de datos en poco tiempo, identificar patrones complejos y aprender de forma contínua a través de sus algoritmos para mejorar su precisión, lo cual la convierte en una gran aliada para los profesionales de la salud”. Y agregó: “es crucial que haya cada vez más mujeres involucradas en el desarrollo de esta tecnología. Al incorporar nuestra perspectiva desde el momento cero, podemos garantizar que la IA no solo sea técnicamente avanzada, sino también nos permitirá crear soluciones íntimamente relacionadas con nuestro género, así como más equitativas y efectivas”.
En línea con estos esfuerzos por mejorar la detección temprana, entre 2016 y 2018, Google comenzó a implementar el uso del aprendizaje profundo -deep learning-, una de las áreas donde la IA emplea redes neuronales artificiales para aprender de grandes conjuntos de datos para realizar tareas complejas, con el fin de asistir a los médicos en la detección de la metástasis. Esta herramienta de análisis de nódulos linfáticos (Lymph Node Assistant -LYNA, por sus siglas en inglés-), es entrenada por medio de imágenes médicas, como radiografías, tomografías o imágenes patológicas, y clasificadas previamente por expertos, para que la IA pueda identificar los macro y micro patrones de la enfermedad. Así, LYNA tiene la capacidad de detectar la localización de la metástasis que, en muchos casos, es casi imperceptible al ojo humano, permitiendo que los médicos puedan acelerar el proceso de diagnóstico y, en consecuencia, adelantar el inicio del tratamiento. 
En 2021, Google Health realizó una investigación clínica junto con Northwestern Medicine para explorar cómo la IA podría acelerar el diagnóstico del cáncer de mama, optimizando el proceso desde la mamografía inicial hasta el diagnóstico final. Comenzaron la investigación recopilando imágenes mamográficas de alta calidad provenientes de diversos pacientes, las cuales fueron clasificadas por expertos en salud para entrenar el modelo de IA ante la detección de cáncer, la identificación de características tumorales, entre otros aspectos.
Posteriormente, el modelo se probó en un entorno clínico real, donde las personas que se sometían a mamografías podían optar por que sus resultados fueran analizados por la IA junto con la evaluación de los radiólogos. Estos arrojaron datos alentadores: se redujeron los falsos negativos en un 9.4% y los falsos positivos en un 5.7%, en comparación con la práctica clínica estándar. Además, la IA demostró su capacidad de analizar una mamografía en menos de dos minutos, lo que permite obtener resultados más rápidos para las pacientes, acelerar tanto el diagnóstico como el tratamiento, al mismo tiempo que reduce los costos asociados a la atención y los tratamientos tardíos.

Premios Nobel: Hallazgos en beneficio de la salud
La semana pasada, Geoffrey Hinton, ex investigador de Google, fue galardonado junto a John Hopfield con el Premio Nobel de Física 2024 por sus descubrimientos en el campo del aprendizaje automático con redes neuronales artificiales (ANN por sus siglas en inglés), que sentaron las bases para el reconocimiento a través de la IA de patrones en imágenes, lenguajes y en información clínica que hoy se utiliza en el campo de la salud y en otras disciplinas.
Como se describe en este documento emitido por el comité del premio Nobel, este descubrimiento fue clave en el desarrollo de la herramienta para la predicción de las estructuras de cualquier proteína en tres dimensiones denominado AlphaFold, motivo por el cual dos científicos de Google DeepMind, Demis Hassabis y John Jumper, obtuvieron también este año el Premio Nobel de Química. AlphaFold fue abierta por Google a la comunidad científica de forma gratuita y ya fue utilizado por más de dos millones de investigadores de más de 190 países.

Read more
Las mejores aplicaciones de entrenamiento gratuitas para iOS y Android
aplicaciones de entrenamiento gratuitas para ios y android mejores apps ejercecios ggratis

Si aún no puedes volver a tu gimnasio, se te ha terminado esa costosa membresía o estás buscando hacer un buen ejercicio en casa o en la oficina, aprovecha una serie de excelentes aplicaciones accesibles que te apoyarán a ejercitarte desde tu celular. Hay muchas apps de pago listas para hacerte sudar, y algunas de ellas pueden valer la pena en las circunstancias adecuadas. Pero no siempre apetece pagar. Ya sea que busques mantenerte en movimiento o gastar algo de tiempo, aquí hay una lista de las mejores aplicaciones de entrenamiento gratuitas para iOS y Android, que te ayudarán a sudar donde quiera que estés.

(Estas son las mejores aplicaciones de fitness gratuitas, sin duda, pero si deseas explorar otras opciones, incluidas las aplicaciones de pago, tenemos listas de las mejores aplicaciones de fitness para Android y las mejores aplicaciones de fitness para iOS también).
Nike Training Club

Read more
Se filtran 5,3 millones de registros de salud en México
La imagen muestra a un médico cirujano durante un procedimiento.

Cybernews informa que sus equipos de investigación encontraron una base de datos desprotegida de 500 GB de una empresa mexicana de atención médica el 26 de agosto de 2024. La base de datos expone información confidencial como nombres, números de identificación personal (CURP), números de teléfono, descripciones de solicitudes de pago y más.

La cantidad total de personas afectadas asciende a 5,3 millones, lo que representa aproximadamente el 4% de la población del país, según señala Cybernews. El informe de Cybernews indica que el error de seguridad se produjo con un uso "mal configurado" de una herramienta de visualización de datos llamada Kibana, que parece haber quedado sin autenticar.

Read more