Skip to main content

Comprueban teorema de Stephen Hawking sobre agujeros negros

El teorema del área de los agujeros negros de Stephen Hawking finalmente se ha confirmado. Mediante el análisis de una onda gravitacional, científicos han comprobado que el horizonte de un agujero negro no se encoge.

Este teorema fue propuesto por Hawking en 1971 y recién se logró confirmar 50 años más tarde. Para ello, investigadores del Instituto de Tecnología de Massachusetts (MIT) observaron la primera onda gravitacional que fue detectada en el observatorio LIGO; esta onda se generó luego de la fusión de dos agujeros negros, que dieron paso a uno nuevo.

Según lo propuesto por Stephen Hawking, el área del horizonte del nuevo agujero negro no debería ser inferior a las de los dos originales. Este teorema se había probado matemáticamente, pero nunca de manera física, hasta ahora.

La imagen muestra una representación de un agujero negro.
Imagen utilizada con permiso del titular de los derechos de autor

La onda gravitacional en cuestión, denominada GW150914, fue descubierta en 2015. De acuerdo al MIT, en ese entonces Hawking estuvo interesado en saber si era posible comprobar su teorema mediante esta onda gravitacional, pero hace seis años atrás los investigadores no tenían los conocimientos necesarios para conseguirlo.

Esto cambio con el paso de los años. En 2019, se halló una técnica que permitió calcular la masa del agujero negro justo después del choque de los agujeros que dieron origen al nuevo: se estima que esa área es de 235,000 kilómetros cuadrados (146,000 millas cuadradas), número que los científicos pueden asegurar con 95 por ciento de exactitud.

El equipo de astrofísicos asegura que este descubrimiento es solo el punto de partida para futuras investigaciones sobre agujeros negros y su comportamiento, que todavía no se conocen mucho más allá de teorías matemáticas formuladas hace décadas.

Recomendaciones del editor

Raúl Estrada
Ex escritor de Digital Trends en Español
Raúl Estrada comenzó en el mundo de los medios de comunicación en 2009, mientras estudiaba ingeniería y escribía en…
El Hubble va a la caza de esquivos agujeros negros medianos
hubble caza agujeros negros medianos

Hay algo extraño en los agujeros negros descubiertos hasta la fecha. Hemos encontrado muchos agujeros negros más pequeños, con masas inferiores a 100 veces la del sol, y muchos agujeros negros enormes, con masas millones o incluso miles de millones de veces la del sol. Pero apenas hemos encontrado agujeros negros en el rango de masa intermedio, posiblemente no lo suficiente como para confirmar que existen, y no está realmente claro por qué.

Ahora, los astrónomos están utilizando el Telescopio Espacial Hubble para buscar estos agujeros negros perdidos. Hubble ha encontrado previamente alguna evidencia de agujeros negros en este rango intermedio, y ahora se está utilizando para buscar ejemplos dentro de unos pocos miles de años luz de la Tierra.
Una imagen del Telescopio Espacial Hubble del cúmulo globular Messier 4. El cúmulo es una densa colección de varios cientos de miles de estrellas. Los astrónomos sospechan que un agujero negro de masa intermedia, con hasta 800 veces la masa de nuestro sol, está al acecho, invisible, en su núcleo. ESA/Hubble y NASA
Es difícil detectar estos agujeros negros intermedios porque el efecto que tienen en las estrellas que los rodean es más modesto que el de los enormes agujeros negros supermasivos que los astrónomos suelen observar. Hubble ha estado observando objetivos como Messier 4, un cúmulo globular que se cree que contiene un agujero negro con una masa de alrededor de 800 veces la del sol. El agujero negro no se puede observar directamente, pero su presencia se puede inferir observando sus efectos sutiles en las estrellas cercanas.

Leer más
Vea la aterradora escala de un agujero negro supermasivo
agujero negro supermasivo aterradora escala

Esta semana es la semana de los agujeros negros, y la NASA está celebrando compartiendo algunas visualizaciones impresionantes de agujeros negros, incluida una visualización francamente inquietante para ayudarlo a imaginar cuán grande es un agujero negro supermasivo. Los agujeros negros supermasivos se encuentran en el centro de las galaxias (incluida la nuestra) y, en términos generales, cuanto más grande es la galaxia, más grande es el agujero negro.
Ilustración del agujero negro Sagitario A* en el centro de la Vía Láctea. Observatorio Internacional de Géminis/NOIRLab/NSF/AURA/J. DA Silva/(Spaceengine) Agradecimientos: M. Zamani (NOIRLab de NSF)
Mientras que un agujero negro típico pesa hasta alrededor de 10 veces la masa del sol, los agujeros negros supermasivos pueden pesar millones o incluso miles de millones de veces la masa del sol. Sin embargo, estos objetos son increíblemente densos, y es difícil imaginar cuán grande sería un objeto así. Ese es el punto de esta comparación de video, que muestra el tamaño de diferentes tipos de agujeros negros en comparación con nuestro sistema solar, escalados de acuerdo con sus sombras.

NASA Animation Sizes Up the Biggest Black Holes

Leer más
Inédita imagen de un agujero negro supermasivo arrojando un chorro de materia
agujero negro arrojando chorro de materia

Además de atraer cualquier cosa que se acerque a ellos, los agujeros negros ocasionalmente pueden expulsar materia a velocidades muy altas. Cuando las nubes de polvo y gas se acercan al horizonte de eventos de un agujero negro, parte de él caerá hacia adentro, pero algunos pueden ser redirigidos hacia afuera en ráfagas altamente energéticas, lo que resulta en dramáticos chorros de materia que se disparan a velocidades cercanas a la velocidad de la luz. Los chorros pueden propagarse por miles de años luz, con un chorro emergiendo de cada uno de los polos del agujero negro en un fenómeno que se cree que está relacionado con el giro de estos.
Los científicos que observan el núcleo de radio compacto de M87 han descubierto nuevos detalles sobre el agujero negro supermasivo de la galaxia. En la concepción de este artista, el chorro masivo de materia del agujero negro se ve elevándose desde el centro del agujero negro. Las observaciones en las que se basa esta ilustración representan la primera vez que el chorro y la sombra del agujero negro se han fotografiado juntos, dando a los científicos nuevos conocimientos sobre cómo los agujeros negros pueden lanzar estos poderosos chorros. S. Dagnello (NRAO/AUI/NSF)
Algunos de los chorros más grandes del universo conocido provienen de los enormes agujeros negros en el centro de las galaxias, llamados agujeros negros supermasivos. Y ahora, por primera vez, los astrónomos han fotografiado un agujero negro supermasivo expulsando uno de esos chorros. El agujero negro en cuestión es el famoso en el corazón de la galaxia Messier 87, que es conocida por ser el primer agujero negro fotografiado por una colaboración llamada Event Horizon Telescope (EHT). Usando una asociación similar de telescopios en todo el mundo, los astrónomos pudieron capturar este monstruoso agujero negro arrojando materia en un chorro.
Esta imagen de GMVA+ALMA muestra la sombra del chorro y el agujero negro de M87 juntos por primera vez, dando a los científicos el contexto necesario para comprender dónde se formó el poderoso chorro. Las nuevas observaciones también revelaron que el anillo del agujero negro, que se muestra en el recuadro, es un 50% más grande de lo que los científicos creían anteriormente. R.-S. Lu (SHAO), E. Ros (MPIfR), S. Dagnello (NRAO/AUI/NSF)
Las observaciones también han dado una nueva visión del agujero negro en sí. "Las imágenes originales del EHT revelaron solo una parte del disco de acreción que rodea el centro del agujero negro. Al cambiar las longitudes de onda de observación de 1,3 milímetros a 3,5 milímetros, podemos ver más del disco de acreción, y ahora el chorro, al mismo tiempo", dijo uno de los investigadores, Toney Minter, en un comunicado. "Esto reveló que el anillo alrededor del agujero negro es un 50% más grande de lo que creíamos anteriormente".

Las observaciones fueron tomadas con radiotelescopios, incluyendo conjuntos potentes como el Global mm-VLBI Array (GMVA) y el Atacama Large Millimeter/submillimeter Array (ALMA), que utilizan muchos platos más pequeños que trabajan juntos para observar fuentes de radio muy distantes. Al combinar los esfuerzos de diferentes observatorios, los astrónomos podrían obtener una mejor visión de este famoso agujero negro. Sabían que el agujero negro estaba emitiendo chorros, pero no sabían exactamente cómo o dónde se estaban formando esos chorros.

Leer más