Skip to main content

Astrónomos consiguen medir masas de más de 800 agujeros negros supermasivos

El mayor censo de agujeros negros supermasivos en el universo cercano o local -aquellos colosos que crecen devorando todo en los núcleos activos de galaxias y que llegan a tener hasta miles de millones de veces la masa de nuestro Sol- ha sido dado a conocer por el equipo científico internacional del proyecto BASS Survey, tras más de 15 de años de investigación incluyendo una destacada participación de astrónomas y astrónomos del Centro de Astrofísica y Tecnologías Afines (CATA), desde Chile.

Astrónomos consiguen medir masas de más de 800 agujeros negros supermasivos

La investigación, que fue dada a conocer en la última edición de la revista Astrophysical Journal, incluye una serie de publicaciones científicas que utilizaron datos de grandes telescopios en el norte de nuestro país, Estados Unidos y el Observatorio Espacial Swift, de la NASA, logrando una extensa acumulación de información que ha permitido construir un mapa de estos agujeros negros activos y sus intensas emisiones en el universo cercano.

Imagen utilizada con permiso del titular de los derechos de autor

Cientos de horas de observación y análisis fueron requeridas para llevar adelante esta tarea, revelando las masas de agujeros negros supermasivos en centros galácticos con un nivel de detalle que había sido imposible conseguir hasta ahora. “El mapa es representativo de los agujeros negros activos en el universo local. Cuenta con más de 800 agujeros negros supermasivos en un rango de distancia de más de 5 mil millones de años luz. La novedad principal es que se pudo estimar las propiedades físicas más importantes para una gran muestra de agujeros negros supermasivos, como sus masas y tasas de acreción o crecimiento”, explica Claudio Ricci astrónomo de la Universidad Diego Portales, investigador del CATA y uno de los científicos principales del proyecto BASS Survey.

Según la investigación, cuando una cantidad sustancial de polvo y gas rodea un agujero negro supermasivo, puede formar un disco de acreción que emite grandes cantidades de luz en todo el espectro electromagnético, alcanzando su punto máximo en el rango óptico y ultravioleta, a
medida que cae en el agujero negro.

Franz Bauer, investigador CATA y académico del Instituto de Astrofísica de la Universidad Católica, quien también participó en la investigación, explica que este mismo polvo y gas, sin embargo, también puede bloquear nuestra vista hacia el llamado motor central, o núcleos
«activos» de las galaxias (AGN por sus siglas en inglés), dificultando la observación de estos gigantes con instrumentos y técnicas tradicionales.

“Lo anterior implica que aunque muchos agujeros negros supermasivos están acumulando material y creciendo activamente, no los vemos fácilmente en longitudes de onda visuales y no los tenemos en cuenta», dice. Esta barrera se pudo superar gracias al instrumento a bordo del Observatorio Swift conocido como BAT (Burst Alert Telescope), capaz de detectar rayos x de alta energía también conocidos como “rayos X duros”, asociados con altas emisiones energéticas procedentes de agujeros negros supermasivos.

Universidad de Goethe

“Es similar al proceso de tomar una radiografía, ya que este instrumento observaba en una frecuencia similar. En este caso, sería como una radiografía cósmica para observar los núcleos de galaxias donde están esos agujeros negros en crecimiento”, explica Ezequiel Treister, Subdirector de CATA y astrónomo de la Universidad Católica de Chile, quien también formó parte de la investigación.

Claudio Ricci, señala que a aquellos niveles de energía, la radiación interactúa muy poco con el material en su camino, permitiendo “detectar también algunos de los agujeros negros más obscurecidos. Esto ha hecho posible que contemos con una muestra casi completa de agujeros negros en fase de acreción (crecimiento) en los centros de las galaxias cercanas”, detalla el investigador. La velocidad a la que crecen estos agujeros negros varía mucho -agrega el astrónomo- desde el equivalente a la masa de Urano por año, a los que se “tragan” el equivalente a 30 planetas Jupiter en un período similar”.

Además del Observatorio Swift y BAT, se utilizaron más de 10 telescopios ópticos e infrarrojos terrestres en nuestro país (Chile) y otras partes del mundo. Ezequiel Treister, destaca que “se trata de un trabajo colaborativo, que requirió el trabajo combinado de telescopios en el hemisferio sur y el hemisferio norte, para poder estudiar los núcleos activos de galaxias distribuidos en todo el cielo. Las medidas de masa fueron posibles gracias a muchísimas observaciones realizadas desde desierto chileno”.

Uno de los resultados publicados en este estudio, liderado desde Chile, fue obtenido utilizando espectroscopía infrarroja para medir la masa de más de 300 agujeros negros supermasivos altamente oscurecidos. “Gracias a estos datos hemos podido medir la masa de los agujeros negros, detectando el movimiento de nubes rotando a alta velocidad en sus alrededores, incluyendo sistemas completamente oscurecidos donde esto no era posible. Esto demuestra la importancia de combinar múltiples observatorios” dice la Dra. Federica Ricci, quien fue investigadora postdoctoral FONDECYT en la Universidad Católica y que actualmente continúa su carrera de investigación en Italia.

Recomendaciones del editor

Diego Bastarrica
Diego Bastarrica es periodista y docente de la Universidad Diego Portales de Chile. Especialista en redes sociales…
Usan IA para mejorar la primera imagen de un agujero negro
ia mejorar primera imagen agujero negro

El mundo observó con deleite cuando los científicos revelaron la primera imagen de un agujero negro en 2019, mostrando el enorme agujero negro en el centro de la galaxia Messier 87. Ahora, esa imagen se ha refinado y afilado utilizando técnicas de aprendizaje automático. El enfoque, llamado PRIMO o modelado interferométrico de componentes principales, fue desarrollado por algunos de los mismos investigadores que trabajaron en el proyecto original del Event Horizon Telescope que tomó la foto del agujero negro.

Esa imagen combinó datos de siete radiotelescopios de todo el mundo que trabajaron juntos para formar una matriz virtual del tamaño de la Tierra. Si bien ese enfoque fue increíblemente efectivo para ver un objeto tan distante ubicado a 55 millones de años luz de distancia, significó que había algunas lagunas en los datos originales. El nuevo enfoque de aprendizaje automático se ha utilizado para llenar esos vacíos, lo que permite una imagen final más nítida y precisa.
La imagen del agujero negro supermasivo M87 publicada originalmente por la colaboración Event Horizon Telescope en 2019 (izquierda); y una nueva imagen generada por el algoritmo PRIMO utilizando el mismo conjunto de datos (derecha). L. Medeiros (Instituto de Estudios Avanzados), D. Psaltis (Georgia Tech), T. Lauer (NOIRLab de NSF) y F. Ozel (Georgia Tech)
"Con nuestra nueva técnica de aprendizaje automático, PRIMO, pudimos lograr la máxima resolución de la matriz actual", dijo la autora principal de la investigación, Lia Medeiros, del Instituto de Estudios Avanzados, en un comunicado. "Dado que no podemos estudiar los agujeros negros de cerca, el detalle en una imagen juega un papel crítico en nuestra capacidad para comprender su comportamiento. El ancho del anillo en la imagen es ahora más pequeño en aproximadamente un factor de dos, lo que será una poderosa restricción para nuestros modelos teóricos y pruebas de gravedad".

Leer más
Un par de agujeros negros supermasivos a punto de fusionarse
hubble agujeros negros supermasivos a punto de fusionarse cu  sares

Los corazones de algunas galaxias brillan tan intensamente que se les da un nombre especial: cuásares. Alimentadas por agujeros negros supermasivos en el centro de estas galaxias, estas regiones emiten enormes cantidades de luz a medida que el gas cae hacia el agujero negro y se calienta, lo que resulta en un brillo tan poderoso como más de 100 mil millones de estrellas. Recientemente, los astrónomos que usan el Telescopio Espacial Hubble vieron dos de estos cuásares ardiendo intensamente en el cielo nocturno, y están en curso de colisión.

El par de cuásares, conocido como SDSS J0749 + 2255, son de algunas de las primeras etapas del universo cuando tenía solo 3 mil millones de años. Las dos galaxias que albergan los cuásares están en proceso de fusión, y eventualmente, las dos se unirán para formar una enorme galaxia.
El concepto de este artista muestra el brillante resplandor de dos cuásares que residen en los núcleos de dos galaxias que están en el caótico proceso de fusión. El tira y afloja gravitacional entre las dos galaxias enciende una tormenta de fuego de nacimiento de estrellas. ILUSTRACIÓN: NASA, ESA, Joseph Olmsted (STScI)
Los dos agujeros negros están a solo 10.000 años luz de distancia, y tardarán diez millones de años en fusionarse. Eso puede sonar como mucho tiempo, pero es inminente en términos galácticos. Observar el par puede ayudar a los astrónomos a aprender sobre el universo temprano y cómo se forman las galaxias grandes.

Leer más
Descubren uno de los agujeros negros más grandes jamás vistos
agujero negro mas grande gravedad de la luz

Un hallazgo astronómico impresionante fue publicado este miércoles 29 de marzo de 2023 en la revista Monthly Notices of the Royal Astronomical Society, se trata de uno de los agujeros negros más grandes jamás encontrados, aprovechando un fenómeno llamado lente gravitacional.

El equipo, dirigido por la Universidad de Durham, Reino Unido, utilizó lentes gravitacionales, donde una galaxia en primer plano dobla la luz de un objeto más distante y la magnífica, y simulaciones de supercomputadora en la instalación DiRAC HPC, lo que permitió al equipo examinar de cerca cómo la luz es doblada por un agujero negro dentro de una galaxia a cientos de millones de años luz de la Tierra.

Leer más