La física por fin explica la lógica de los castillos de arena

Una parte importante del planeta se alista para la llegada del verano. En este periodo, aumentan los paseos a la playa, los que en esta temporada estarán condicionados por las medidas para prevenir la COVID-19.

De todas maneras, los veraneantes podrán disfrutar el mar y la arena, así como una de las tradiciones más importantes en la playa: la construcción de castillos de arena.

Sabemos que, pasa su edificación, se necesita agua y arena, con eso debería bastar. Sin embargo, los científicos llevan varias décadas intentando comprender la lógica que mantiene en pie a estas bellas construcciones.

Para poder explicarlo, han tenido que recurrir a una ecuación establecida por primera vez hace 150 años por el físico Lord Kelvin, que indicaba cómo funcionaba la condensación capilar, precisamente el fenómeno que mantiene en pie los castillos.

Hoy día, un equipo liderado por el Premio Nobel Andre Geim ha conseguido explicar cómo funciona este proceso microscópico y vincularlo con la construcción de los castillos; de manera específica cómo el agua actúa como una suerte de pegamento que mantiene los granos de arena unidos por medio de fuerzas capilares.

La imagen muestra un impresionante castillo de arena construido en una playa.

¿Cómo lo comprobaron?

El vapor de agua en el aire se condensa dentro de materiales porosos o entre superficies en contacto. Sin embargo, como la capa líquida tiene solo unas moléculas de espesor, este fenómeno no se había podido entender hasta ahora.

La condensación capilar también puede ser entendida como la fase final del proceso de absorción de un vapor en un sólido poroso.

Encabezados por Andre Geim, investigadores de la Universidad de Mánchester han fabricado capilares artificiales, que son lo suficientemente pequeños como para que el vapor de agua se condense en su interior.

Sus experimentos demostraron que la ecuación de Kelvin es capaz de describir la condensación capilar incluso en los capilares más pequeños.

La condensación capilar está presente en prácticamente todo lo que nos rodea. Procesos tan importantes como fricción, adhesión, lubricación y corrosión se ven afectados por la condensación capilar.

También es muy importante en procesos tecnológicos utilizados por la microelectrónica, la farmacéutica y otras industrias.

Además, le permite a los niños fabricar impresionantes castillos de arena que permanecen en pie pese a todo.

“La vieja ecuación resultó funcionar bien. Un poco decepcionante pero también emocionante para finalmente resolver el misterio centenario”, explica el doctor Qian Yang, autor principal del informe publicado en Nature.

Recomendaciones del editor